TPO 03: Purification d'un liquide: techniques de distillation

Objectifs de la séance :

- Se familiariser avec les techniques suivantes : utilisation de l'évaporateur rotatif, distillation fractionnée et hydrodistillation
- Conserver les fractions obtenues en vue d'analyses par mesure d'indice de réfraction lors de la séance de 2h suivante
- Conclure sur la particularité et les conditions d'utilisation de chacune des techniques.

Les 3 manipulations sont à réaliser par binôme.

I L'évaporateur rotatif

Le butan-1-ol est dissous dans le dichlorométhane. (Proportions 50/50). L'objectif de cette partie est d'éliminer le dichlorométhane.

- Introduire 30 mL du mélange dans un Buchi (ballon poire pour évaporateur rotatif) préalablement taré et le fixer à l'évaporateur rotatif.

Utilisation de l'évaporateur rotatif :

- Amener son Buchi (ballon poire) bouché avec un valet (surtout ne pas laisser d'olive dans le Buchi).
- Vérifier la propreté du l'évaporateur rotatif.
- Graisser (graisse spéciale) l'embout de l'évaporateur rotatif et y accrocher le ballon.
- Faire circuler l'eau de refroidissement.
- Mettre la pompe et le robinet de vide en route.
- Mettre l'agitation du ballon en route.
- Fermer doucement l'embout noir pour diminuer la pression dans l'évaporateur rotatif, puis tourner lentement le robinet en verre
- Surveiller que l'ébullition dans le ballon ne soit pas trop violente.
- Si besoin, plonger le ballon dans le bain d'eau chaude (en fonction des températures d'ébullition des solvants à éliminer).

Lorsque l'élimination du solvant est finie, faire toutes les étapes **en sens inverse**. Ne pas oublier de vider le ballon de récupération dans le bidon à solvant organique (halogéné ou non), puis le rincer à l'acétone.

Remarque : Le volume de la solution ne doit pas dépasser le tiers du volume total du buchi.

- Une fois le solvant éliminé, peser le butan-1-ol et le conserver pour les analyses.
- ➡ Résultats dans la fiche de résultats sur le cahier de labo.

CR:

- l-a- Dessiner les molécules du mélange et préciser leur polarité ainsi que les caractéristiques physico-chimiques suivantes : masse molaire, densité, température d'ébullition, indice de réfraction.
- I-b- A l'aide de vos connaissances sur les interactions intermoléculaires, expliquer pourquoi le mélange est homogène.
- I-c- Expliquer sur quel principe physique repose la séparation effectuée.
- I-d- Compléter la feuille de résultats.
- I-e- Calculer le rendement de séparation et commenter vos résultats.
- I-f- Conclure quant à l'efficacité de la séparation effectuée.

Il La distillation fractionnée sous pression atmosphérique

Le mélange à séparer contient du butan-1-ol, de l'acétate d'éthyle et du pentan-1-ol (proportions 1/3 -1/3). L'objectif de cette partie est de séparer ces trois espèces chimiques à l'aide d'une distillation fractionnée sous pression atmosphérique.

TPO 03 TS₁C 2015-2016

- Réaliser le montage de distillation fractionnée, et le faire vérifier par le professeur.
- Distiller 30 mL du mélange et récupérer les 3 fractions dans des erlenmeyers propres, secs et tarés. Au vu des températures d'ébullition des fractions, il sera peut-être nécessaire de placer les erlenmeyers dans un bain de glace afin de limiter l'évaporation des distillats.
- Peser les liquides séparés et les conserver pour les analyses.
- Injecter en CPG chacune des fractions ainsi que le mélange initial. (Un chromatogramme CPG doit contenir un titre et les informations importantes doivent être surlignées au fluo.)

Résultats dans la fiche de résultats sur le cahier de labo. Joindre les chromatogrammes CPG.

CR:

II-a- Dessiner les molécules du mélange et préciser leur polarité ainsi que les caractéristiques physico-chimiques suivantes : masse molaire, densité, température d'ébullition, indice de réfraction.

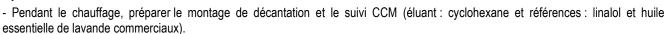
II-b- A l'aide de vos connaissances sur les interactions intermoléculaires, expliquer pourquoi le mélange est homogène.

II-c- Expliquer sur quel principe physique repose la séparation effectuée.

II-d- Compléter la feuille de résultats.

II-e- Calculer le rendement de séparation et commenter tout vos résultats.

II-f- A l'aide des spectres CPG, et en assimilant le %surfacique au %massique (méthode des aires), déterminer la pureté de chaque échantillon.


II-f- Conclure quant à l'efficacité de cette séparation.

II-g- Dans quel cas serait-il plus judicieux de travailler sous Préd ? Justifier.

III Hydrodistillation

L'objectif de cette partie est d'extraire le linalol (ci-contre) des fleurs de lavande à l'aide d'une hydrodistillation.

- Remplir le ballon avec 10 g de graines de fleurs de lavande et de l'eau (moitié du volume du ballon).
- Réaliser le montage d'hydrodistillation pour extraire l'huile essentielle de la lavande et le faire vérifier par le professeur.
- Distiller jusqu'à l'obtention d'un volume de distillat d'environ 30 mL ; surveiller régulièrement le niveau d'eau et en rajouter si nécessaire.

- Réaliser la décantation en rajoutant une 20aine de mL d'eau saturée en NaCl au distillat.
- Récupérer l'huile essentielle dans un erlenmeyer taré bien sec et de contenance adaptée.
- Peser l'huile essentielle.
- Réaliser un spectre IR et mesurer conserver l'huile essentielle dans un pilulier.
- Réaliser la CCM en ajoutant un dépôt pour l'huile essentielle extraite dissoute dans l'éthanol et révéler au permanganate. Coller la plaque et la légender dans le cahier de labo.

➡ Résultats dans la fiche de résultats sur le cahier de labo.

CR:

III-a- Préciser la polarité de la molécule de linalol ainsi que les caractéristiques physico-chimiques suivantes : masse molaire, densité, température d'ébullition.

III-b- A l'aide de vos connaissances sur les interactions intermoléculaires, expliquer pourquoi le linalol et l'eau forment un mélange hétérogène.

III-c- Expliquer le rôle du relargage.

III-d- Compléter la feuille de résultats.

III-e- Calculer le rendement d'extraction et commenter tous vos résultats.

CR: BILAN

IV- Expliquer les spécificités de chaque technique, et comment choisir la mieux adaptée pour un mélange donné.

Noms du binôme :

I Evaporateur rotatif				
mmélange introduit = g	m _{butan-1-ol recueilli} =	g	V _{butan-1-ol recueilli} =	mL
Calcul du rendement de la séparation :				
Conclusion:				
n ^D mesuré = à T° =	n ^D à 20°	C =		
II Distillation fractionnée (Patm)				
Téb AcOEt tabulée = Tpassage AcOEt mesurée =				
Téb BuOH tabulée = Tpassage BuOH mesurée =				
Téb pentan-1-ol tabulée = Tpassage pentan-1-ol mesurée =				
V _{mélange} introduit =	mL			
Densité des trois produits :	d _{AcOEt} =	d _{BuOH} =	d _{pentan-1-ol} =	
m _{AcOEt recueilli} =	g	V _{AcOEt recueilli} =	mL	
Calcul du rendement de la séparation :				
m _{BuOH recueilli} =	g	V _{BuOH} recueilli =	mL	
Calcul du rendement de la séparation :				
m pentan-1-ol recueilli =	g	V pentan-1-ol recueilli =	mL	
Calcul du rendement de la séparation :				
Pour AcOEt : $n^{D_{mesuré}} =$	T°:	n ^D tabulé =		
Pour BuOH : $n^{D_{mesur\acute{e}}}$ =	T°:	n ^D tabulé =		
Pour pentan-1-ol : n ^D mesuré =	T°:	n ^D tabulé =		

III Hydrodistillation

 m_{fleurs} = g $m_{\text{huile essentielle}}$ = g Rdt d'extraction :