TS1 CO_01 2015-2016

FICHE_01 : DETERMINER UNE FORMULE BRUTE AVEC LA COMPOSITION CENTESIMALE

Méthode:

- Extraire de l'énoncé les éléments chimiques qui composent la molécule dont on cherche à déterminer la formule brute.
- Etablir les équations des réactions de l'analyse (combustion, dégradation, précipitation...)
- Extraire de l'énoncé les données nécessaires aux calculs des pourcentages massiques : m_{H2O} ; m_{CO2} ; V_{N2} ou ($V_{\acute{e}q}$, E_{H2SO4} et C_{acide} pour Kjeldahl) et m_{AgX}
- Calculer les pourcentages massiques en explicitant le principe du calcul :

Méthode de Liebig $\% m_{\rm C} = \frac{m_{\rm CO_2} {}^{\smallfrown} M_{\rm C}}{m_{\rm echantillon} {}^{\backsim} M_{\rm CO_2}}$	% $m_H = \frac{2.m_{H_2O} \cdot M_H}{m_{echantillon} \cdot M_{H_2O}}$	Méthode de Dumas $\% m_N = \frac{2.M_N.P_{N_2}.V_{N_2}}{RT.m_{echantillon}}$
Méthode de Kjeldahl (dépend des conditions et notations) $\% m_{N} = \frac{M_{N}}{m_{\text{echantillon}}} \left(2 C_{H2 \text{SO4}} E - C_{\text{NaOH}} V_{\text{eq}} \right)$	$\%m_{_{X}}=rac{m_{_{AgX}}.M_{_{X}}}{M_{_{AgX}}.m_{_{\acute{e}chantillan}}}$	$%m_{O} = 1 - \mathop{\mathring{\text{a}}}_{i=\text{\'el\'ements}^{1} O} %m_{i}$

Démonstrations à connaître!

- Extraire la valeur de la masse molaire moléculaire de l'énoncé ou d'une étude de spectre de masse
- Etablir la formule brute $C_cH_hO_oN_nX_x^{-1}$:

$c = \frac{\% m_{\rm C} M}{M_{\rm C}} \qquad h$	$=\frac{\% m_{\!\scriptscriptstyle H} M}{M_{\scriptscriptstyle H}}$	$n = \frac{\% m_N M}{M_N}$	$x = \frac{\% m_X \times M}{M_X}$	$O = \frac{\% m_{\rm O} \dot{M}}{M_{\rm O}}$
---	--	--------------------------------	------------------------------------	--

¹ Diviser par 100 si le pourcentage direct est utilisé (par ex. : 40 %), sinon, laisser tel quel (avec 0,4)